TiO2 Metasurfaces with Visible Quasi-Guided Mode Resonances via Direct Imprinting of Aqueous Nanocrystal Dispersions

Abstract

We report a room temperature, environmentally benign, water-based, single-step direct nanoimprint process to pattern dielectric metasurfaces using aqueous titanium dioxide (TiO2) nanocrystal (NC) inks, which are free of polymer additives or nonaqueous solvents typically used in nanofabrication. The metasurfaces are composed of TiO2 NC structures with a high refractive index of 1.94 ± 0.02 at 543 nm. TiO2 NC metasurfaces are designed to resonate at visible wavelengths and are fabricated as two-dimensional nanopillar gratings atop waveguides. Guided mode resonances within the waveguide couple to the overlaying gratings and scatter into free space, forming high quality (Q) factor quasi-guided mode (QGM) resonances. Electric and magnetic QGM resonances are observed, and their environmental refractive index sensitivities (S) are measured to be 69.1 and 70.4 nm/RIU, respectively, with a figure of merit (FOM) = Q × S > 3000. The use of water-based inks and the room temperature processing allow integration of TiO2 NC metasurfaces on rigid and flexible, polymeric substrates.

https://pubs.acs.org/doi/10.1021/acsanm.3c03507